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Compact manifolds embedded in Euclidean space which have a transitive group
G of linear isometries, such as the spheres with the rotation group or the ``flat'' tori
with the group of rotations in each coordinate direction, admit a natural notion of
a continuous G-invariant kernel function k(x, y), which generalizes the idea of a
radial or distance-dependent function on the spheres and tori. In connection with
a study of quasi-interpolation on these spaces, we have reproved and extended
results of Sun for the spheres to characterize those kernels for which the span of the
translates, � ank(x, yn), is dense in the continuous functions. The essence of the
characterization is that the integral operator with G-invariant kernel k(x, y) must
be non-singular when restricted to the space of n th degree polynomial functions.
This requires that the polynomials be invariant under all such linear operators,
which is true for many compact homogeneous M including the spheres, tori, and
others. In fact the non-singularity must hold only on any finite-dimensional space
of zonal polynomials, those which are pointwise fixed by the subgroup of all
isometries fixing a single point on M. In practical terms this later condition is
verified by choosing one point on the manifold (the north pole on the spheres or
the identity element on the flat tori), picking some basis for the polynomials of
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given degree which are fixed under the isometries leaving the pole invariant, and
testing whether the integral operator (which leaves this space invariant) has a
non-singular matrix. In all the cases considered, where the family of G-invariant
kernels lead to commuting operator families, there are diagonalizing bases for this
restricted operator, and the characterization becomes the non-vanishing of the
appropriate Fourier-like coefficients. � 2000 Academic Press

1. INTRODUCTION

For any smooth compact submanifold M of Rd with (x, y) the standard
inner product, the restrictions of the polynomials form a dense subspace of
C(M) and so provide a natural class of functions for either direct
approximation or analysis of the approximating properties of other classes
of functions. In one particular case of interest, quasi-interpolation, the
object is often the study of real symmetric (or self-adjoint) kernels k(x, y)
on M_M and the approximation properties of the linear combinations
� ai k(x, yi). A first step in understanding such properties is to investigate
the density properties of all such linear combinations or more generally:

Characterize the closure of K=[� aik( } , yi): ai # R, yi # M] .

(In case k is complex-valued and self-adjoint, ai # R is replaced by ai # C.)
How to use the well-understood density of the polynomials to determine K�
for specific k forms the major focus for this paper.

For spheres or tori characterization of K� has been achieved previously
by the use of facts about spherical harmonics or multiple Fourier series [3,
7, 8]. Our aim here is to simplify and unify these cases by dispensing with
these facts and using only extremely elementary facts from geometry,
analysis, and approximation theory. We can make substantial progress on
the general characterization problem for those compact manifolds in a
Euclidean space which are homogeneous and reflexive in the sense that
their local geometry looks the same at any two points x, y, and an isometry
which transfers the geometry from x to y can be found which also maps y
back to x. That is, we study embedded compact reflexive spaces in the sense
of

Definition 1.1. A compact manifold M/Rd in an embedded compact
homogeneous space provided

(i) There is a compact group G�O(d ) of orthogonal matrices
which acts as a transitive group of isometries on M, i.e. g } M=M for all
g # G and for each pair x, y # M, there is an isometry g # G with g } x=y.
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M is an embedded compact reflexive space2 provided it also satisfies

(ii) For each pair x, y # M there is a g # G with g } x=y and g } y=x.

Remark 1.2. The definitions here are only for compact M, so we will
often drop the word compact. Moreover, since the metric and algebraic
properties of M we require are completely determined by its embedding in
a specific Euclidean space, none of the abstract theory of homogeneous
spaces will be needed; all the development will depend on relatively familiar
facts such as the isometric action given by multiplication by an orthogonal
matrix and the invariance of Lebesgue measure under an orthogonal
change of variables.

Harmonic analysts have long studied functional analysis in this setting
by means of group representation theory [2]. In fact much of the material
in Sections 3 and 4 is familiar to them. From the approximation theorist's
perspective the definition of embedded reflexive spaces captures the
geometric properties of a space which render the familiar polynomials (of
a fixed degree) invariant under both the linear isometries from G and the
action of G-invariant kernels and thus guarantees that the polynomials
provide an intrinsic link between the geometric structure and functional
analysis on the manifold. This allows much of the complexity of repre-
sentation theory and associated differential operators to be replaced by
simple arguments about ordinary polynomials and finite dimensional
invariant subspaces.

For example, for any sphere about the origin, the orthogonal matrices
form a transitive group of linear isometries, and for any x, y, reflection
through or rotation around the axis (x+y)�2 provides the required inter-
change of x, y. Any orthogonal map composed with a polynomial is again
a polynomial of the same degree. Here the polynomials are just finite series
of spherical harmonics, i.e., eigenfunctions of the spherical Laplacian, but
no facts about spherical harmonics or the Laplace operator on the sphere
are needed for our work. Similarly the m-torus embedded in R2m, realized
as a product of m circles about the origin in R2, possesses the torus itself
as a transitive group of isometries realized by the block diagonal
orthogonal matrices with 2_2 rotations on the diagonal. However, to have
a reflexive space we must also include the reflections in each R2. Any poly-
nomial in this setting is just a finite multivariate trigonometric series, but
here, too, no facts about multi-dimensional Fourier series are needed. A
less familiar example, but one which begins to get at the diversity of the
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examples we could consider, is the space of 2-dimensional subspaces of Rn

realized as the manifold of all rank 2 projection matrices in Rn_n. Since any
projection has the form v1vT

1 +v2vT
2 , where [v1 , v2] is an orthonormal

basis for the subspace, orthogonal maps of Rn act transitively on these
bases and yield a transitive action on the rank 2 projection matrices. The
interchange of two 2-planes, x, y, arises from the Euclidean reflection
through a 2-plane which bisects the (angular) distance between x and y.

For embedded homogeneous manifolds M we study G-invariant kernels
and their associated zonal functions. The specific definitions are in

Definition 1.3. Let M be an embedded homogeneous space and G a
transitive group of linear isometries.

(i) A kernel function k on M_M is G-invariant if k(x, y)=
k(g } x, g } y) for all g # G.

(ii) A zonal function on M with pole p # M is any function f with
f (h&1 } x)= f (x) for all h # G with h } p=p and all x # M.

Each G-invariant kernel, k, determines a zonal function with pole p:
kp (x)=k(x, p) and conversely. Obviously the structure of a G-invariant
kernel k(x, y) depends only on the relative geometry between its variables.

In the case of the spheres, the invariance of the kernels under all
orthogonal maps means that the kernel, or rather the associated zonal
function, only depends on the great circle distance between its arguments;
thus we study radial functions on spheres which are essentially functions
of one real variable. In the case of the tori, the invariance of a kernel
under rotations means the associated zonal function is just an arbitrary
continuous function on the torus. In the case of 2-dimensional subspaces in
Rn, the kernels depend only on two (dihedral) angles which characterize
the relative placement of the two planes, i.e., a function of two circular
distances.

When we require M to be reflexive, any G-invariant kernel will be
symmetric since we can use the g from Definition 1.3(ii) to conclude k(x, y)
=k(g } x, g } y)=k(y, x). At least for real k this suggests we may be dealing
with some self-adjoint integral operators for which identification of the
eigenfunctions may be an appropriate and useful goal.

We shall associate to any (continuous) kernel k on M_M the operator
Tk defined by

Tk( f )(x)=|
M

k(x, y) f (y) d+(y),
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where + is the ``surface'' measure on M. This measure is obtained by
splitting the Lebesgue measure of the ambient space as a local product
dx=dxM _dxM= of its components tangential and normal to M. Then
d+=cM dxM is just the tangential component normalized by the constant
cM so +(M)=1.

Now the existence of eigenfunctions for any single operator Tk is a
well-known fact. However, in our study of G-invariant k the set

TG=[Tk : k any G-invariant continuous kernel]

is often a commuting family closed under adjoints. For instance, this is so
when M is reflexive (Proposition 3.7) or a flat torus. As a result there are
finite-dimensional spaces of polynomials which are eigenfunctions for the
whole family TG , and depend only on the linear isometries, i.e., geometric
invariants, of M.

Our main goal is to prove the following result (see Theorem 4.3):

Theorem 1.4. Suppose M is an embedded compact homogeneous space
with G an associated group of linear isometries of M. Let Hn be the polyno-
mials of degree at most n which are orthogonal to those of degree less than
n in L2(M). Fix a pole p # M and let Kp be the isometries in G which fix p.
Let KpHn be the zonal polynomials in Hn with pole p. Suppose M is reflexive
or more generally that TG is a commuting family. If k(x, y) is a continuous
G-invariant kernel on M_M, then K is dense in C(M) if and only if for
every n and all p # KpHn , Tk( p)( } ){0. In particular for any basis [ pn, j] of
KpHn consisting of eigenfunctions with Tk( pn, j)=an, j pn, j , density holds if
and only if an, j {0 for all n, j.

Remark 1.5. Since the zonal polynomials are Tk invariant (see
Theorem 3.8 below) and the set TG is a commuting (normal) family there
always exist eigenfunction bases which are independent of k. Thus this
theorem leads to quite explicit tests for density of K.

In Section 2 we consider the special case of S d&1, the sphere in Rd. The
treatment of the sphere gives insight into the general procedure described
in Section 3 and the following section. In Section 5 the sphere is revisited
in light of the preceding work, and then the example of the tori is
discussed.

2. THE SPHERE

In this section we illustrate the details of the general setting discussed
above in the simple case of Sd&1, the sphere in Rd. In Proposition 2.1 of
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this section we reformulate the general density result of Theorem 1.4 as a
known result of Sun [7]. We use this opportunity to provide a simplified
proof more in the spirit of our geometric invariant approach and out
Theorem 4.1 in Section 4. Here, we study kernels k(x, y) which are
invariant under all rotations and reflections, and thus depend only on
the geodesic distance between x and y. Since the geodesic distance,
d(x, y)=cos&1((x, y) ), is a strictly monotone (decreasing) function of
(x, y), we wish to approximate by functions of the form k( } , y)=,(( } , y) ),
where y # S d&1. If we restrict the polynomials of degree n to S d&1 we obtain
a space Pn . If we let Hn=Pn & P=

n&1 , then this polynomial space turns out
to be exactly the harmonic polynomials of degree n. The classical spherical
harmonics hn1 , hn2 , ..., hn?n

are an orthonormal basis for Hn with respect to
the (normalized) surface measure 0 on Sd&1. Using the Sone�Weierstrass
Theorem (see, e.g., Cheney [1]), we know that the space H=�Pn=
�� j=n

j=0 H j of all polynomials is uniformly dense in C(S d&1) and hence the
collection of all spherical harmonics, [hni], over all degrees, is an orthonor-
mal basis for L2(Sd&1). It is well known that the Gegenbauer polynomials
p*

n , *=(d&2)�2, satisfy the relationship

p*
n((x, y) )= :

?n

i=1

hni (x) hni (y), (1)

where the p*
n are normalized so that p*

n(1)=dim Hn=?n as required by
integration of 1 over the diagonal x=y; see Muller [5]. However, this
relationship holds true for any orthonormal basis, not just the classical
spherical harmonics. (In effect we give a simple (re)proof of this via
Proposition 3.6 and the discussion of the sphere in Section 5.)

We can now prove

Proposition 2.1. Let ,: [&1, 1] � R be continuous and have the
Gegenbauer expansion

,(t)= :
�

n=0

an p*
n(t).

Then, the set 8=[,(( } , y) ): y # Sd&1] is fundamental in C(Sd&1) if and
only if an {0 for any n # N0=N _ [0].

Proof. Let us prove only the ``if '' direction first. Because the space H is
dense in C(Sd&1) we need only prove that we can approximate uniformly
any hni , n=0, 1, 2, ..., i=1, 2, ..., ?n by a function of the form

:
i # I

ci,(( } , yi) ),
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where I is some finite index set. Then, for any n=0, 1, 2, ... and i=
1, 2, ..., ?n ,

|
Sd&1

,((x, y) ) hni (y) d0(y)

=|
S d&1 { :

�

m=0

am p*
m((x, y) )= hni (y) d0(y)

=|
S d&1 { :

�

m=0

am :
?m

j=1

hmj (x) hmj (y)= hni (y) d0(y)

=anhni (x),

where the penultimate line follows from (1) and the final step uses the
orthonormality of the spherical harmonics. This string of L2(Sd&1)
equalities has continuous functions at each end, so we get the pointwise
equality

|
S d&1

,((x, y) ) hni (y) d0(y)=an hni (x), (2)

the Funk�Hecke formula [5]. The result follows by uniform approxi-
mation of the above integral by an appropriate Riemann sum, since the
integrand is jointly uniformly continuous.

For the ``only if '' direction we show that if an=0 for some n then
hnj � Span(8) for any j=1, 2, ..., ?n . In fact the equality (2) above shows
each hnj (x) is orthogonal to ,((x, y) )=,((y, x) ) and hence to the span
of 8. Taking uniform limits preserves this orthogonality and proves the
``only if '' part. K

Remark 2.2. Let N=[n: an=0] be finite. Then, to ensure a dense
approximating subspace, 8 must be augmented by HN =Span(�n # N Hn).
Because of the orthogonality of the spherical harmonics the coefficients ci

in the approximation

f (x)rfN (x)+ :
i # I

ci,(( } , y i) ),

with fN # HN , can be chosen so that

:
i # I

cihnj (yi)=0,
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for every j=0, 1, ..., ?n and n # N. For, suppose m � N and hmj # Hm . Then

|
S d&1

hmj (y) hni (y) d0( y)=0,

for all hni # HN . If we choose a sufficiently accurate quadrature rule with
nodes [yi] and weights wi which preserves this orthogonality, we have

:
i # I

wi hmj (yi) hni (y i)=0.

Setting ci=wi hmj (yi), we have

hmj (x)=|
Sd&1

,((x, y) ) hmj (y) d0(y)

r :
i # I

ci,((x, yi) ),

with

:
i # I

cihni (yi)=0.

for any hni # HN . Thus, we can approximate a single harmonic by a
function of the required form and it is straightforward to generalise this to
a linear combination of harmonics.

3. G-INVARIANT POLYNOMIAL DECOMPOSITIONS OF L2

The general approach to kernels on compact manifolds in Euclidean space
which is presented in this section mimics the above proof of Proposition 2.1
in many respects.

All the natural function spaces on the homogeneous space M, such as
C(M) and L2(M), admit a norm-preserving action of each g # G, often
referred to as translation by g, given by g } f (x)= f (g&1 } x). The fact that
this is a norm-preserving action on L2(M) follows from the fact that since
G consists of orthogonal matrices, Lebesgue measure and + are invariant
under the action of any g # G. Our main results characterizing the density
of K will follow easily from the results we are about to give providing
orthogonal decompositions of L2(M) into G-invariant spaces of polyno-
mials and relating G-invariant spaces to Tk invariant spaces.

We begin our discussion of decompositions of L2(M) with a definition of
the polynomials Pn which makes no reference to coordinates:
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Definition 3.1. The polynomials of degree at most n on M are

Pn=Span {`
m

i=1

(yi , } ): yi # Rd, m�n=/C(M).

The yi are not required to be in M but the functions (yi , } ) are considered
to be restricted to M.

Now exactly as we did for the sphere we define the harmonic polynomials
of degree n:

Definition 3.2. The harmonics of degree n are given by Hn=Pn &

P=
n&1 .

Since a linear function (yi , } ) is transformed by the action of g # G into
another linear function, (g } yi , } ) , the following invariance and orthogonal
decomposition results are immediate, given the density of the polynomials
in C(M).

Proposition 3.3. The following hold on any embedded homogeneous
space M.

(i) The spaces Pn and Hn are G-invariant.

(ii) The span of the harmonics is dense in C(M).

(iii) L2(M)=��
n=0 Hn .

Now we need to connect G-invariant subspaces and kernels. First we
note that any linear operator T maps one G-invariant subspace to another
G-invariant space exactly when it is G-equivariant according to

Definition 3.4. An operator T on functions is G-equivariant provided
it commutes with translation by each g # G, i.e. T(g } f )= g } T( f ).

Notice that an operator Tk , determined by a kernel k, is G-equivariant
exactly when k is a G-invariant kernel, due to the G-invariance of +. Our
hope is to show that each of the Hn is actually Tk invariant. A critical step
is the study of a reproducing kernel for a subspace V:

Definition 3.5. A kernel k(x, y) is a reproducing kernel for a (closed)
subspace V provided

Tk( f )={f,
0,

for all f # V

for all f # V=.
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For finite-dimensional spaces the basic facts about reproducing kernels
are as follows.

Proposition 3.6. Let V be any finite-dimensional subspace of L2(M),
where M is an embedded homogeneous space with associated group G. Then

(i) V has a unique reproducing kernel kV (x, y)=�dim(V)
i=1 f i (x) f i (y),

where [ fi] is any orthonormal basis for V.

(ii) TkV
is the orthogonal projection on V.

(iii) kV is G-invariant if and only if V is G-invariant.

(iv) If V is G-invariant, then

(a) for any fixed pole p # M, V is spanned by the G-translates of the
zonal function kV, p ;

(b) kV (x, x)=dim(V), for all x # M.

Proof. The formula for kV satisfies Definition 3.5 by the definition of
an orthonormal basis. Moreover, this definition is exactly the definition of
the orthogonal projection on V. The uniqueness of kV follows from the
fact that the orthogonal projection is unique. Thus (i) and (ii) are proved.

For (iii) suppose kV is G-invariant. Then for f # V, TkV
(g } f )=

g } TkV
( f )= g } f, since TkV

is the orthogonal projection on V. Hence
g } f # V, i.e., V is G-invariant. Conversely, if V is G-invariant, then [g } fi]
is also an orthonormal basis and the uniqueness of kV shows

kV (g&1 } x, g&1 } y)= :
dim(V)

i=1

g } f i (x) g } f i (y)=kV (x, y).

Thus kV is G-invariant.
For (iv.a) suppose some v # V is orthogonal to all translates g } kV, p .

Then from the fact that kV reproduces V and kV (y, x)=kV (x, y) we get

0=|
M

v(x) kV (g&1 } x, p) d+(x)

=|
M

kV (g } p, x) v(x) d+(x)=v(g } p).

Since this holds for all g, v=0 and the translates must span the finite-
dimensional space V.

For (iv.b) just note that the G-invariance of kV means that this kernel
is constant on the diagonal. Integration with respect to x yields dim(V),
since we are assuming + has been normalized to yield +(M)=1. K

261TRANSLATES OF ZONAL KERNELS



In the sphere case we saw (2) that the space Hn was invariant under the
action of any integral operator with a radial kernel k( } , } )=,(( } , } ) ). In
the more general context of embedded homogeneous spaces Hn will be
invariant under Tk , for k G-invariant, exactly when Tk commutes with the
orthogonal projection onto Hn ; i.e., if kn is the G-invariant reproducing
kernel for Hn , then Hn is Tk invariant exactly when Tk Tkn=Tkn Tk . Thus
the significance of our notion of reflexive spaces should be clear from the
following general commutativity result.

Proposition 3.7. If M is reflexive then TG is a commuting family of
operators closed under taking adjoints.

Proof. We have already noted how the g in Definition 1.1(ii) shows
k(x, y)=k(y, x). When this is used in the inner product it shows
(Tk( f ), h) =( f, Tk� (h)) for all f, h # L2(M), i.e., T k*=Tk� , so the family is
closed under adjoints. Now for any two continuous kernels k1 , k2 , Fubini's
theorem shows that

Tk1 Tk2( f )(x)=|
M

k1(x, z) \|M
k2(z, y) f (y) d+(y)+ d+(z)

=|
M \|M

k1(x, z) k2(z, y) d+(z)+ f (y) d+(y).

So the product Tk1
Tk2

of two kernel operators is a kernel operator Tk1 V k2

with kernel

k1 V k2(x, y)=|
M

k1(x, z) k2(z, y) d+(z).

Moreover if k1 and k2 are G-invariant, then for each pair x, y the symmetry
of k1 , k2 and the G-invariance of + yields

k1 V k2(x, y)=|
M

k2(y, z) k1(z, x) d+(z)

=|
M

k2(y, g&1 } z) k1(g&1 } z, x) d+(z)

=|
M

k2(g } y, z) k1(z, g } x) d+(z)

=k2 V k1(x, y),

when g } x=y and g } y=x. Thus Tk1
Tk2

=Tk2 V k1
=Tk2

Tk1
. K
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We are now in a position to prove our first main result relating polyno-
mials and the analysis of G-invariant kernels.

Theorem 3.8. Let M be an embedded reflexive space or more generally
an embedded homogeneous space for which the set TG is a commuting family
of operators. Let k(x, y) be any continuous G-invariant kernel. Then

(i) Pn and Hn are Tk -invariant.
(ii) For any choice of pole p # M the zonal polynomials in Pn and Hn

are also Tk invariant.
(iii) Any finite-dimensional Tk invariant subspace V of L2(M) consists

of polynomials.

Proof. Since Pn and Hn are G-invariant spaces of continuous functions,
(i) follows easily from Propositions 3.7 and 3.6. In fact, Tk commutes with
the projection operators arising from the reproducing kernels of either of
these two G-invariant spaces. Hence the range of the projections onto
either of these two spaces in Tk invariant.

It is simple to see that the zonal function subspaces are Tk invariant. In
fact, suppose h } f = f for all h with h } p=p. Then h } Tk( f )=Tk(h } f )=
Tk( f ) since Tk is G-equivariant. So Tk( f ) is zonal.

For (iii) just note that P=
n & V is a decreasing sequence of finite-dimen-

sional Tk -invariant subspaces of V which must eventually be [0]. Thus for
some large n, (I&TkPn

) TkV
=0, or TkV

=TkPn
TkV

. We conclude that V,
the range of the orthogonal projector TkV

, is included in Pn . K

4. REDUCTION OF ZONAL KERNEL OPERATORS

Characterizing the structure of operators like Tk is really quite simple,
once we have the invariance of the (harmonic) polynomial spaces Hn , as
in Theorem 3.8. In fact, we just exploit the orthogonal decomposition of an
arbitrary function relative to the subspaces Hn ,

f = :
�

n=0

fn , fn # Hn ,

given in Proposition 3.3. An obvious criterion for the density of the range
of Tk is

Theorem 4.1. Let k(x, y) be a G-invariant kernel on a space M such
that TG is commutative, e.g. a reflexive space. The closure of the range of Tk

is all of C(M) if and only if ker (Tk | Hn)=[0] for all n.
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Proof. In order to approximate an arbitrary continuous function we
need only be able to approximate all the elements of Hn for each n # N0 ,
because the polynomials are dense in the continuous functions. Because, by
Theorem 3.8, Hn is Tk -invariant, we can generate the whole of Hn by
action under Tk if and only if Tk is invertible as a finite-dimensional linear
operator on Hn . Finally, on a finite-dimensional space, a linear operator is
invertible if and only if its nullspace is [0]. K

Of course, this is a very general condition that still requires examination
of Tk on all of Hn , for each n. If we exploit the G-equivariance of Tk and
thus the Tk invariance of the zonal functions in Hn then we can reduce the
analysis of Tk to analysing its restriction to the various zonal harmonic
spaces via Theorem 3.8.

We need the following refinement of Proposition 3.3(iii), which gives
a complete and detailed analog of Fourier series expansions for (zonal)
functions on M for which TG is commutative.

Proposition 4.2. Let M be an embedded compact homogeneous space
for which TG is a commuting family.

(i) Each Hn has a (unique) decomposition Hn=�dn
i=1 Hn, i , where

each Hn, i is a G-irreducible space of polynomials.

(ii) Each f # L2(M) has an L2-expansion f =�n �i fn, i with
fn, i=TkHn, i

( f ) # Hn, i .

(iii) The terms in the expansion in (ii) are eigenfunctions for each
Tk # TG . Specifically,

(a) Each fn, i satisfies Tk( fn, i)=an, i fn, i for some eigenvalue an, i

which depends only on k, n and i.
(b) The eigenvalue an, i calculated from Tk(kHn, i , p)=an, i kHn , i , p is

given by

an, i dim(Hn, i)=|
M

k(p, y) kHn, i (y, p) d+(y).

(c) k(x, p)=��
n=0 �dn

i=0 an, i kHn, i (x, p).

Proof. Suppose Hn is not G-irreducible, i.e., it has some proper
G-invariant subspace V. Then V= & Hn is a G-invariant orthogonal
complement. Since dim(V)<dim(Hn)<�, repetition of this argument
must eventually reach the irreducible decomposition claimed in (i).

Uniqueness follows from the fact that any G-irreducible V�Hn must be
equal to one of the Hn, i just obtained. In fact V & Hn, i=0 or Hn, i=V by
the irreducibility of Hn, i and V and the G-invariance of their intersection.
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The intersection cannot be 0 for all i, since then TkV
=�i TkHn, i

TkcV=0
from the decomposition just obtained.

Now (ii) refines Proposition 3.3(iii) and follows immediately from the
representation of the reproducing kernel for Hn, i given by Proposition 3.6.

As for (iii)(a), just note that the G-equivariant operator Tk maps Hn, i

into itself since Tk TkHn, i
=TkHn, i

Tk and TkHn, i
is the orthogonal projection

on Hn, i . Thus the symmetric Tk has some eigenvector h # Hn, i with real
eigenvalue an, i . Now each translate g } h is an eigenvector for the same
eigenvalue as g } Tk(h)=Tk(g } h). Since Hn, i is G-irreducible, Span[g } h]=
Hn, i . This proves (iii)(a).

For (iii)(b), just observe that for f (x)=kHn, i (x, p), f = fn, i # Hn, i . So by
(iii)(a) this f satisfies the eigenvalue equation Tk(kHn , i , p)=an, ikHn, i , p .
Evaluate this at p and use the fact that kV (p, p)=dim(V) for any
G-invariant V, Proposition 3.6(iv)(b) to get the formula for an, i .
Moreover, the sum in (ii) applied to f =kp yields (iii)(c) since the com-
mutativity of TG and (iii)(a) show

fn, i (x)=TkHn, i
(kp )(x)=Tk(kHn, i , p)(x)=an, ikHn, i , p(x). K

Now we combine these last two results to obtain our best criterion for
determining the density of the translates of a zonal kernel. This gives a
reformulation and proof of Theorem 1.4.

Theorem 4.3. Let M be any embedded homogeneous space for which
TG is commutative, e.g. a reflexive space. Let k(x, y) be any G-invariant
continuous kernel on M_M. Fix a pole p # M. Then the span of the functions
k( } , y), y # M, is dense in C(M) if and only if for all n and all zonal
polynomials p # KpHn , Tk( p){0. More specifically, if

k(x, p)= :
�

n=0

:
dn

i=0

an, i kHn, i (x, p)

is the expansion of kp in terms of the reproducing kernels for the
G-irreducible spaces Hn, i /Hn , then the span is dense if and only if an, i {0
for all n, i.

Proof. By Theorem 4.1 we only need to show that ker (Tk | Hn)=
[0] if and only if ker (Tk | KpHn)=[0]. The ``only if '' direction is trivial.
Suppose that V=ker (Tk | Hn){[0]. Then V is G-invariant since Tk is
G-equivariant. Hence V is spanned by the G-translates of the zonal func-
tion KpV and thus, as in Proposition 3.6(iv), V contains a zonal function
kV, p # KpHn . Hence kV, p # ker (T | KpHn){[0]. The more specific result
follows from Proposition 4.2 since the an, i represent all the eigenvalues of
Tk restricted to the zonal functions. K
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5. EXAMPLES OF ZONAL KERNEL OPERATORS

We consider the two simple cases of the spheres and the tori.

Example 5.1 (The Spheres). Let the point p be the north pole on the
sphere. The sphere is the orbit of O(d ) the group of rotations on Rd and
Kp =O(d&1). In this case Hn is the space spanned by the spherical
harmonics of degree n. Because k is a zonal kernel k(x, y)=k(g&1 } x, p),
where y= g } p. The orthogonal decomposition of k( } , p) with respect to Hn

is

k( } , p)= :
�

n=0

(pn( } , } ), k( } , p)).

However, as k( } , p) is clearly Kp invariant, the above decomposition must
also be Kp invariant. It is well known and easy to see that the only
elements of Hn which are invariant under rotations fixing the north pole
are the multiples of the so-called zonal harmonic

pn(x)=� hnj (x) hnj (p)

=p*
n((x, p) )

as in (1). Hence

k(x, y)=(g&1 } x, p)

= :
�

n=0

an p*
n((g&1 } x, p) )

= :
�

n=0

an p*
n((x, y) ),

where

an=|
Sd&1

k(x, p) p*
n((x, p) ) d0(x).

We see from the last equation that the only zonal kernels on the sphere are
radial kernels (some function of geodesic distance from a fixed point).
Furthermore, we can apply exactly the same reasoning as in Proposi-
tion 2.1 to see that Tk is invertible on Hn if and only if an {0.

Example 5.2 (The Tori). The torus is not reflexive under the group
action of the torus (SO(2))d, but TG is a commuting family of operators.
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If we consider the action of (O(2))d (realised as outlined below), then the
torus is reflexive. In this example we will act on the torus by these two
different groups to illustrate how increasing the size of the group G acting
on the manifold reduces the size of the family of zonal kernels.

The d-torus Td may be identified with the Cartesian product of d unit
circles in the complex plane:

Td=[(z1 , z2 , ..., zd): zi # C, |zi |=1].

If we let p=(1, 1, ..., 1) be the identity on the torus then we can identify the
torus with the orbit of p under the action of SO(2)d or O(2)d. In the former
case Kp is trivial. Let r be the element of O(2) which sends z to z� , and
g% # O(2), % # [0, 2?) be such that g% } z=ei%z. Set id= g0 . Then, for all
g # O(2), g=r jg% , where j=0, 1, and % # [0, 2?). Then, under the action of
(O(2))d, Td is reflexive. In this case, Kp =[id, r]d.

The space Hn is spanned by the functions z:=(z:1
1 , z:2

2 , ..., z:d
d ), with

: # Zd with |:|=n, where |:|=|:1|+ } } } +|:d |. Hence Hn is Kp invariant.
The reproducing kernel is

pn(x, y)= :
|:|=n

x:y� :

so that we have the orthogonal decomposition for the zonal kernel

k(x, y)=k(y&1x, p)

= :
�

n=0

(pn(y&1 x, } ), k( } , p))

= :
�

n=0

:
|:|=n

(y&1x): |
Td

z� :k(z, p) dz

= :
�

n=0

:
|:|=n

a:(y&1x):,

with the obvious definition of a: .
In the case when G=(SO(2))d, the zonal kernels on the torus are

convolution kernels, and it is clear the Tk is non-singular on Hn if and only
if a: {0 for each |:|=n. This agrees with the result of Levesley and
Kushpel [3].

However, if G=(0(2))d, the kernel k must also be invariant under reflection;
i.e., k(ri } x, ri } y)=k(x, y), where ri } (z1 , ..., zi , ..., zd)=(z1 , ..., z� i , ..., zd). This
means that, if ;=(:1 , ..., &:i , ..., :d), a:=a; , and k is even in each variable
of x. This is a more restricted family of zonal kernels than in the previous case.
As indicated in Theorem 4.3, Tk is non-singular on Hn if and only if a: {0 for
all |:|=n and :i�0 for every i=1, ..., d.
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